Type: \(\displaystyle A^{2}_1+A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{2}_1+A^{1}_1\))
Simple basis: 2 vectors: (1, 1, 1, 1, 1, 1, 1), (0, 1, 2, 2, 2, 2, 2)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: D^{1}_4+A^{1}_1
simple basis centralizer: 5 vectors: (0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 0, 1, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1, 2)
Number of k-submodules of g: 59
Module decomposition, fundamental coords over k: \(\displaystyle 2V_{2\omega_{1}+\omega_{2}}+V_{2\omega_{2}}+9V_{2\omega_{1}}+16V_{\omega_{2}}+31V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, -1, -2, -2, -2)(0, 0, 0, -1, -2, -2, -2)g_{-37}-\varepsilon_{4}-\varepsilon_{5}
Module 21(0, 0, 0, -1, -1, -2, -2)(0, 0, 0, -1, -1, -2, -2)g_{-33}-\varepsilon_{4}-\varepsilon_{6}
Module 31(0, 0, 0, 0, -1, -2, -2)(0, 0, 0, 0, -1, -2, -2)g_{-29}-\varepsilon_{5}-\varepsilon_{6}
Module 41(0, 0, 0, -1, -1, -1, -2)(0, 0, 0, -1, -1, -1, -2)g_{-28}-\varepsilon_{4}-\varepsilon_{7}
Module 51(0, 0, 0, 0, -1, -1, -2)(0, 0, 0, 0, -1, -1, -2)g_{-24}-\varepsilon_{5}-\varepsilon_{7}
Module 61(0, 0, 0, 0, 0, -1, -2)(0, 0, 0, 0, 0, -1, -2)g_{-19}-\varepsilon_{6}-\varepsilon_{7}
Module 71(0, 0, 0, -1, -1, -1, 0)(0, 0, 0, -1, -1, -1, 0)g_{-17}-\varepsilon_{4}+\varepsilon_{7}
Module 81(0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, -1, -1, 0)g_{-12}-\varepsilon_{5}+\varepsilon_{7}
Module 91(0, 0, 0, -1, -1, 0, 0)(0, 0, 0, -1, -1, 0, 0)g_{-11}-\varepsilon_{4}+\varepsilon_{6}
Module 101(0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, -1, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 111(0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, -1, 0, 0)g_{-5}-\varepsilon_{5}+\varepsilon_{6}
Module 121(0, 0, 0, -1, 0, 0, 0)(0, 0, 0, -1, 0, 0, 0)g_{-4}-\varepsilon_{4}+\varepsilon_{5}
Module 131(0, -1, 0, 0, 0, 0, 0)(0, -1, 0, 0, 0, 0, 0)g_{-2}-\varepsilon_{2}+\varepsilon_{3}
Module 141(0, 1, 0, 0, 0, 0, 0)(0, 1, 0, 0, 0, 0, 0)g_{2}\varepsilon_{2}-\varepsilon_{3}
Module 152(0, -1, -1, -2, -2, -2, -2)(0, 0, 1, 0, 0, 0, 0)g_{3}
g_{-45}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{4}
Module 161(0, 0, 0, 1, 0, 0, 0)(0, 0, 0, 1, 0, 0, 0)g_{4}\varepsilon_{4}-\varepsilon_{5}
Module 171(0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 1, 0, 0)g_{5}\varepsilon_{5}-\varepsilon_{6}
Module 181(0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 1, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 192(0, 0, -1, -2, -2, -2, -2)(0, 1, 1, 0, 0, 0, 0)g_{9}
g_{-43}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 202(0, -1, -1, -1, -2, -2, -2)(0, 0, 1, 1, 0, 0, 0)g_{10}
g_{-42}
\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{5}
Module 211(0, 0, 0, 1, 1, 0, 0)(0, 0, 0, 1, 1, 0, 0)g_{11}\varepsilon_{4}-\varepsilon_{6}
Module 221(0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 1, 1, 0)g_{12}\varepsilon_{5}-\varepsilon_{7}
Module 233(-1, -1, -1, -2, -2, -2, -2)(1, 1, 1, 0, 0, 0, 0)g_{14}
g_{-23}
g_{-46}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 242(0, 0, -1, -1, -2, -2, -2)(0, 1, 1, 1, 0, 0, 0)g_{15}
g_{-40}
\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{3}-\varepsilon_{5}
Module 252(0, -1, -1, -1, -1, -2, -2)(0, 0, 1, 1, 1, 0, 0)g_{16}
g_{-39}
\varepsilon_{3}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
Module 261(0, 0, 0, 1, 1, 1, 0)(0, 0, 0, 1, 1, 1, 0)g_{17}\varepsilon_{4}-\varepsilon_{7}
Module 271(0, 0, 0, 0, 0, 1, 2)(0, 0, 0, 0, 0, 1, 2)g_{19}\varepsilon_{6}+\varepsilon_{7}
Module 283(-1, -1, -1, -1, -2, -2, -2)(1, 1, 1, 1, 0, 0, 0)g_{20}
g_{-18}
g_{-44}
\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{5}
-\varepsilon_{1}-\varepsilon_{5}
Module 292(0, 0, -1, -1, -1, -2, -2)(0, 1, 1, 1, 1, 0, 0)g_{21}
g_{-36}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 302(0, -1, -1, -1, -1, -1, -2)(0, 0, 1, 1, 1, 1, 0)g_{22}
g_{-35}
\varepsilon_{3}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
Module 311(0, 0, 0, 0, 1, 1, 2)(0, 0, 0, 0, 1, 1, 2)g_{24}\varepsilon_{5}+\varepsilon_{7}
Module 323(-1, -1, -1, -1, -1, -2, -2)(1, 1, 1, 1, 1, 0, 0)g_{25}
g_{-13}
g_{-41}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 332(0, 0, -1, -1, -1, -1, -2)(0, 1, 1, 1, 1, 1, 0)g_{26}
g_{-32}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 341(0, 0, 0, 1, 1, 1, 2)(0, 0, 0, 1, 1, 1, 2)g_{28}\varepsilon_{4}+\varepsilon_{7}
Module 351(0, 0, 0, 0, 1, 2, 2)(0, 0, 0, 0, 1, 2, 2)g_{29}\varepsilon_{5}+\varepsilon_{6}
Module 363(-1, -1, -1, -1, -1, -1, -2)(1, 1, 1, 1, 1, 1, 0)g_{30}
g_{-7}
g_{-38}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 372(0, -1, -1, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 2)g_{32}
g_{-26}
\varepsilon_{3}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
Module 381(0, 0, 0, 1, 1, 2, 2)(0, 0, 0, 1, 1, 2, 2)g_{33}\varepsilon_{4}+\varepsilon_{6}
Module 393(-1, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 1)g_{34}
h_{7}+h_{6}+h_{5}+h_{4}+h_{3}+h_{2}+h_{1}
g_{-34}
\varepsilon_{1}
0
-\varepsilon_{1}
Module 402(0, 0, -1, -1, -1, -1, 0)(0, 1, 1, 1, 1, 1, 2)g_{35}
g_{-22}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
Module 412(0, -1, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 2, 2)g_{36}
g_{-21}
\varepsilon_{3}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
Module 421(0, 0, 0, 1, 2, 2, 2)(0, 0, 0, 1, 2, 2, 2)g_{37}\varepsilon_{4}+\varepsilon_{5}
Module 433(-1, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 2)g_{38}
g_{7}
g_{-30}
\varepsilon_{1}+\varepsilon_{7}
\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 442(0, 0, -1, -1, -1, 0, 0)(0, 1, 1, 1, 1, 2, 2)g_{39}
g_{-16}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 452(0, -1, -1, -1, 0, 0, 0)(0, 0, 1, 1, 2, 2, 2)g_{40}
g_{-15}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
Module 463(-1, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 2, 2)g_{41}
g_{13}
g_{-25}
\varepsilon_{1}+\varepsilon_{6}
\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 472(0, 0, -1, -1, 0, 0, 0)(0, 1, 1, 1, 2, 2, 2)g_{42}
g_{-10}
\varepsilon_{2}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
Module 482(0, -1, -1, 0, 0, 0, 0)(0, 0, 1, 2, 2, 2, 2)g_{43}
g_{-9}
\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
Module 493(-1, -1, -1, -1, 0, 0, 0)(1, 1, 1, 1, 2, 2, 2)g_{44}
g_{18}
g_{-20}
\varepsilon_{1}+\varepsilon_{5}
\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
Module 502(0, 0, -1, 0, 0, 0, 0)(0, 1, 1, 2, 2, 2, 2)g_{45}
g_{-3}
\varepsilon_{2}+\varepsilon_{4}
-\varepsilon_{3}+\varepsilon_{4}
Module 513(-1, -1, -1, 0, 0, 0, 0)(1, 1, 1, 2, 2, 2, 2)g_{46}
g_{23}
g_{-14}
\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{4}
-\varepsilon_{1}+\varepsilon_{4}
Module 523(0, -1, -2, -2, -2, -2, -2)(0, 1, 2, 2, 2, 2, 2)g_{47}
2h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+h_{2}
g_{-47}
\varepsilon_{2}+\varepsilon_{3}
0
-\varepsilon_{2}-\varepsilon_{3}
Module 536(-1, -2, -2, -2, -2, -2, -2)(1, 1, 2, 2, 2, 2, 2)g_{48}
g_{27}
g_{1}
g_{-8}
g_{-31}
g_{-49}
\varepsilon_{1}+\varepsilon_{3}
\varepsilon_{3}
\varepsilon_{1}-\varepsilon_{2}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}
-\varepsilon_{1}-\varepsilon_{2}
Module 546(-1, -1, -2, -2, -2, -2, -2)(1, 2, 2, 2, 2, 2, 2)g_{49}
g_{31}
g_{8}
g_{-1}
g_{-27}
g_{-48}
\varepsilon_{1}+\varepsilon_{2}
\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 551(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{2}0
Module 561(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{4}0
Module 571(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{5}0
Module 581(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 591(0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0)h_{7}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 28
Heirs rejected due to not being maximally dominant: 24
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 24
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{2}_1
Potential Dynkin type extensions: A^{2}_1+2A^{1}_1,